Current Opinions on the Human Safety of Titanium Dioxide and Zinc Oxide

J F. Nash, Ph.D. Central Product Safety The Procter & Gamble Company Cincinnati, OH 45241 nash.jf@pg.com

Human Safety: Objective

- There are no human health concerns associated with the use of "nano" TiO₂ and ZnO
 - as used in sunscreen products
 - at anticipated exposures
- \circ SCCS favorable opinion for TiO₂ and ZnO
 - "nano" supplement for TiO_2 is under review
 - for ZnO, a supplement is being prepared

Definitions of "Nano"

Definitions of "Nano"*

Nanoparticle (1-100 nm)

- Particle with all three external dimensions at the nanoscale. [Alternative descriptions: Crystal Size, Primary Particle Size]
- Aggregate (30-150 nm)
 - Particle comprising strongly bonded or fused particles where the resulting external surface area is significantly smaller than the sum of calculated surface areas of the individual components.
 [Alternative descriptions: Particle Size, Primary Particle Size]
- Agglomerate (1-100 µm)
 - Collection of loosely bound particles or aggregates or mixtures of the two where the resulting external surface area is similar to the sum of surface areas of the individual components.

*ISO CD of TS 27687 – Technical spec. August 2008

Smallest structure present in cosmetic formulations 30-150 nm

Definitions of "Nano": consequences

Publications on TiO₂ and ZnO in sunscreen and "nano"

Toxicological Considerations: Dermal Penetration

STUDY	MATERIAL	RESULTS
<u>Tan <i>et al</i>., 1996</u>	Microfine TiO ₂	Penetration into dermis claimed, but no statistically significant difference from controls
Dussert and Gooris, 1997	TiO ₂ (50-100 nm), ZnO (20-200 nm)	
Lademann, 1999	Microfine TiO ₂	No penetration into epidermis/dermis (man)
Pflücker <i>et al.,</i> 2001	$\rm TiO_2$, 10 and 100 nm	
Schulz <i>et al.,</i> 2002	TiO ₂ , 10-100 nm, different coatings and shapes	
Menzel <i>et al</i> , 2004, EU NANODERM project	Commercial sunscreens containing TiO ₂ NPS	Penetration through SC into S granulosum, but not into S spinosum; porcine skin <i>in vivo</i> (no penetration in hair follicles)
Gontier et al, 2004	TiO ₂ NPs	No penetration into living skin (mouse, pig and human skin <i>in vitro)</i>
Popov <i>et al.,</i> 2005	TiO ₂ NPs	No penetration into epidermis/dermis most penetration within 3 μ m; NB: SC is 15-20 μ m thick (man, repeated application)
Gamer <i>et al</i> ., 2006	ZnO and TiO ₂ (30-160 nm)	No penetration of Zn, ZnO, Ti or TiO ₂ , porcine skin <i>in vitro</i>
Cross <i>et al</i> ., 2007	ZnO, 15 and 30 nm	No penetration into epidermis or dermis, human skin <i>in vitro</i>

Toxicological Considerations: Dermal Penetration

STUDY	MATERIAL	RESULTS
Mavon <i>et al</i> ., 2007	TiO ₂ , 20 nm	No penetration into epidermis or dermis; epidermal artefacts <i>in vitro;</i> human skin <i>in vitro</i> and <i>in vivo</i>
Lekki <i>et al</i> ., 2007 (EU NANODERM project)	TiO_2 (20 nm) in sunscreen formulations (ion microscopy and autoradiography)	- No penetration into living skin (human and porcine skin in vitro)
		 Presence of NPs in 3-5 first layers of SC and in follicles only (mechanical movement, no « diffusion » pathway)
Pinheiro <i>et al.</i> (2007), EU NANODERM project	TiO ₂ NPs in sunscreen formulations (nuclear	- No penetration into living skin, using human intact or psoriatic skin <i>in vivo</i>
	meroscopy)	- TiO ₂ permeation profile similar in healthy and psoriatic skin
Japan Cosmetic Industry Association (2007)	TiO ₂ (10-20 nm) and ZnO (20- 30 nm) NPs in Water/D5 emulsions	No evidence of skin penetration of TiO ₂ /ZnO NPs beyond first layers of the SC, pig skin in vitro
Kiss <i>et al</i> (2008), EU NANODERM project	Commercial sunscreens containing nano TiO ₂	No penetration of TiO_2 into living skin ; human skin xenografts implanted onto mice
Sadrieh <i>et al</i> (SoT poster, March 2008)	Sunscreen formulations containing TiO_2 (nano or micro, coated or not)	No systemic distribution of TiO ₂ (slightly increased Ti levels in dermis, but not in liver or lymph nodes in all groups, micro or nano); mini-pig, repeated application

Toxicological Considerations: Genotoxicity/photo-genotoxicity

• Example of genotoxicity/photogenotoxicity for nano TiO₂

CRYSTALLINE FORM	Mean primary particle size (nm)	COATING	Ames / Photo- Ames	CHO / Photo-CHO
Rutile	14	Al ₂ O ₃ /Dimethicone	negative	negative
Anatase	60	Al ₂ O ₃ /SiO ₂	negative	negative
Anatase	60	Uncoated	negative	negative
Anatase	200 µm	Uncoated	negative	negative*
Rutile	20	Al ₂ O ₃ /Dimethicone	negative	negative
Rutile	17	Al ₂ O ₃ /Stearic acid	negative	negative
Rutile	20	Uncoated	negative	negative
Rutile	15	Al ₂ O ₃ /Stearic acid	negative	negative
Rutile	15	Uncoated	negative	negative
Rutile	11-28	AI_2O_3/SiO_2	negative	negative

* Some inconclusive / positive results at high cytotoxic levels, but overall rated negative.